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Abstract- Reliable forecasts of univariate time series data are often necessary in several contexts. ARIMA 

models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for 

ARIMA is an imperative yet task. Thus, a stepwise algorithm is introduced to provide robust estimates for 

parameters (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄) used in seasonal ARIMA models. This process is focused on improvising 

the overall quality of the estimates and it alleviates the problems induced due to the unidimensional nature 

of the methods that are currently used such as ‘auto.arima’. The fast and automated search of parameter 

space also ensures reliable estimates of the parameters that possess several desirable qualities and 

consequently resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing 

on real as well as simulated data the authors have found sufficient evidence to conclude that the algorithm 

performs better than current state-of-the-art methods, all the while completely obviating the need for 

human intervention due to its automated nature. 

 

Index Terms- Time Series, auto.arima, ARIMA parameters, Forecast, R 
 

I. INTRODUCTION 

ime Series analysis and forecasting plays an essential role in various fields such as business, finance, 

economics, science, and engineering. Due to its importance in solving practical problems, several 

methods have been proposed in the literature to model a time series so that past observations are 

carefully handled, and future can be predicted accurately with confidence. Time series forecasting is thus 

nothing but an endeavour to predict the future by an astute scrutiny of the past. 

One of the most popular and frequently used time series models is ARIMA (Autoregressive Integrated 

Moving Average) suggested by George Box and Gwilym Jenkins in their seminal text-book Time Series 

Analysis: Forecasting and Control [1]. The modelling approach is well celebrated in the academic 

community due to its robust theoretical underpinnings. In fact, under certain assumptions, it has been 

shown that ARIMA models may yield the optimal forecasts, outperforming competing methods such as 

Exponential Smoothing [2]. Variants of ARIMA, such as seasonal ARIMA, has been in use as well, with 

additional sets of parameters to capture the seasonality present in the series. 

When applied on real-world data however, ARIMA originally didn't receive such vogue from industry 

practitioners. This is partly because business data may not always conform to the necessary assumptions, 

but mostly due to the difficult, iterative time-consuming, and highly subjective procedure described by 

Box and Jenkins to identify the proper form of the model for a given data set. There have since been 

many attempts at automating the search for the optimal ARIMA model. However, as will be discussed in 

the later sections – all of them show several limitations.   

T 
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This paper presents a stepwise algorithm which automates the iterative nature of Box and Jenkin's 

approach to find best seasonal ARIMA model for a particular time series and performs better than current 

state of the art algorithms in terms of various criterion on which a time series model is judged and thus 

may fail to eliminate the need of human intervention. 

Section II summarizes the existing works which has been done to find solution to automatic ARIMA 

modelling. Section III describes the ARIMA model and the proposed algorithm. Section IV discusses the 

advantages of proposed algorithm over existing processes. Section V sums up the performance of the 

proposed algorithm on various time series data sets and section VI provides a salient conclusion. 

II. LITERATURE REVIEW 

Several attempts have been made in direction to automate the procedure to find ARIMA model in the past 

years, especially, in the eighties and nineties. The most recent method is given by Hyndman et. al [3] in 

which he proposed finding an optimum ARIMA model by minimizing AIC [4] by considering different 

combinations of model parameters. Presently, this procedure is most used commercially as a back-end 

algorithm in statistical software R's forecast package's auto.arima and in Scikit-Learn's pmdarima in 

Python. 

Hannan [5] proposed a method to identify the order of an ARMA model for a stationary series by fitting 

the innovations as an autoregressive model to the data followed by computation of likelihood of potential 

models using a series of standard regressions. The asymptotic properties of the procedure under very 

general conditions were then derived. 

Gömez [6] extended the Hannan-Rissanen identification method to include multiplicative seasonal 

ARIMA model identification. They implemented the automatic identification procedure in the softwares 

TRAMO and SEATS in which the algorithm fetched the model with minimum BIC. 

Mélard and Pasteels [7] proposed an algorithm for univariate ARIMA models which also allows 

intervention analysis and has been implemented in the software package "Time Series Expert" (TSE-AX). 

Liu [8] also suggested a method for identification of seasonal ARIMA models using a filtering method 

and certain heuristic rules which is used in SCA-Expert software. Forecast Pro [9], which is partially 

based on [10] and is famous for its automatic ARIMA algorithm which was used in the M3-forecasting 

competition [11]. Another proprietary algorithm is implemented in Autobox [12].  

Hwang [13] developed an automated time series cost forecasting system (ATMF) including both auto-

selected procedures for determining a best-fitting model and an auto-extracting module for forecasting 

values using the Box-Jenkins approach. Amin et. al [14] proposed an automated forecasting approach 

based on ARIMA to capture linear and non-linear patterns to predict future values of Quality of Service 

(QoS) attributes that can assist in controlling in software intensive systems. 

However, it needs to be highlighted that not much attempts have been proposed post Hyndman et. al [3] 

to automate the procedure of modelling in ARIMA. The lack of literature in recent times along with some 

serious limitations of the existing processes make it imperative to develop an automated forecast method 

based on the original Box and Jenkins approach.  
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III. MODEL 

A. Framework 

A seasonal ARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑓 process is given by 

    𝛷(𝐵𝑓)𝜙(𝐵)(1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑𝑦𝑡  = 𝑐 + 𝛩(𝐵𝑓)𝜃(𝐵)𝜖𝑡  

Where, 𝜖𝑡 is a white noise process with mean 0 and variance 𝜎2, 𝛷(𝑧) and 𝛩(𝑧) are polynomials of 

order 𝑃 and 𝑄 respectively, each containing no roots inside a unit circle, 𝐵 is a backshift operator and 𝑓 

is the seasonal frequency of the series. 

For a seasonal time series, 𝐷 = 0 𝑜𝑟 𝐷 = 1 is decided on the basis of Canova-Hansen test [15]. This test 

tests the Null Hypothesis that no seasonal unit root is present. Unit-root tests to test for presence of 

stochastic trend such as ADF test [16]� and KPSS test [17]� are performed to choose the optimum 

value of the parameter 𝑑. ADF test tests the Null Hypothesis that unit root is present whereas KPSS test 

tests the Null Hypothesis that no unit root is present. 

After optimum 𝑑 and 𝐷 is chosen, optimum 𝑝, 𝑞, 𝑃, and 𝑄 are selected on the basis of the ACF and 

PACF of the series so that best model with minimum AIC and best performance on test data is obtained. 

A time series 𝑌𝑡 has a mean,  

𝜇 = 𝐸[𝑌𝑡] 

and autocovariance function,  

𝛾𝑌(𝑡 + ℎ, 𝑡) = 𝐶𝑜𝑣(𝑌{𝑡+ℎ}, 𝑌_𝑡) = 𝐸[(𝑌𝑡+ℎ − 𝜇(𝑡+ℎ))(𝑌𝑡 − 𝜇𝑡)] 

It is stationary when both mean and autocovariance function are independent of 𝑡.  

The Autocorrelation Function (ACF) is 

𝜌𝑦(ℎ) =  
𝛾𝑌(ℎ)

𝛾𝑌(0)
  =  𝐶𝑜𝑟𝑟(𝑌𝑡+ℎ , 𝑌𝑡) 

When 𝑑, 𝐷, 𝑝, 𝑞, 𝑃, and 𝑄 are known, a model can be evaluated via an information criterion such as 

AIC: 

𝐴𝐼𝐶 =  −2𝑙𝑜𝑔(𝐿)  +  2(𝑝 + 𝑞 + 𝑃 + 𝑄 + 𝑘), 

where, 𝑘 = 1 if 𝑐 ≠ 0 and 𝑘 =  0 otherwise and 𝐿 is the maximized likelihood of the model fitted to the 

differenced data (1 − 𝐵𝑓)
𝐷

(1 − 𝐵)𝑑𝑦𝑡    

The performance of a time series model is evaluated on the basis of Mean Absolute Percentage Error 

(MAPE). In a time series, if 𝑦𝑡 is the actual value and  𝑦�̂� is the predicted value (forecast) and the series 

conists of 𝑛 time points then MAPE is defined as follows: 

    𝑀𝐴𝑃𝐸 =
100

𝑛
 ∑

|𝑦𝑡 − 𝑦�̂�|

𝑦𝑡

𝑛

𝑡=1
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An optimised seasonal ARIMA model should satisfy the following criteria: 

1. Optimum difference order, 𝑑, should be on the basis of both KPSS and ADF test. 

2. Optimum seasonal difference order, 𝐷, should be on the basis of Canova-Hensen test. 

3. Optimum 𝑝, 𝑞, 𝑃 and 𝑄 should be on the basis of ACF and PACF. 

4. It should have minimum AIC. 

5. It should have minimum test MAPE. 

6. Model residuals should not have serial autocorrelation 

B. Algorithm 

 
Finding the best ARIMA Model has always been subjective and difficult. There is no hard and fast rule 

suggested in literature to find a best ARIMA model which makes developing an automated solution to it 

even more cumbersome. Robert Hyndman [3] has suggested finding optimum ARIMA models on the 

basis of AIC, which is currently being used in popular statistical softwares such as auto.arima in R and 

pmdarima in Scikit-learn in python. However, we note, this approach is unidimensional in nature as it 

only looks to find the model with minimum AIC. 

We suggest an algorithm which has a multidimensional view and it has been broken down into three 

separate algorithms in this paper for the understanding of the reader. The Algorithm 1 finds optimum 𝐷 

and 𝑑 of the ARIMA model. It consumes input data which is a time series data and tests for presence of 

seasonality in the data. It carries out Canova Hansen test to check for seasonal unit root and passes out the 

seasonally differenced data to next step. The algorithm automatically skips this test if the data is annual in 

nature. In next step, Augmented Dickey Fuller test and KPSS test are performed to find optimum 𝑑. In 

case, results of ADF test and KPSS test do not match, it throws a warning to user. 

Algorithm 2 gives optimum 𝑝, 𝑞, 𝑃, and 𝑄 of the model. The differenced data from algorithm 1 is taken as 

an input and ACF and PACF of the series are computed. Based on the values of ACF and PACF, 

optimum values of 𝑝, 𝑞, 𝑃 and 𝑄 are found. There has been an upper bound put on the values of these 

parameters so that the resulting model is parsimonious.  

Algorithm 3 fits the ARIMA model and performs diagnostic tests. It stores AIC of the resulting model 

and compute residuals. It then performs Ljung-Box test on residuals to check for presence of serial 

autocorrelation in the residuals. It throws the optimum parameters and AIC of the model along with the 

results of Ljung-Box test. 

Let us, then, formally introduce the algorithms.  
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Input:  Time Series 𝑦𝑡, explanatory variable 𝑥𝑡, frequency 𝑓, cut off value 𝑉 

Output: Optimum 𝐷, 𝑑 

Initialize: 

𝑧𝑡 = 0, 𝑑 = 0, 𝐷 = 0, 𝑤𝑡 = 0, 𝑑1 = 0, 𝑑2 = 0 

Seasonal Unit Root: 

if 𝑓 >  1: 

      Perform Canova Hansen Test on 𝑦𝑡  

       if 𝐻0 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 then 𝑧𝑡 = 𝑦𝑡  −  𝑦𝑡−𝑓; 𝐷 = 1 

      else 𝑧𝑡 = 𝑦𝑡;  𝐷 = 0 

Augmented Dickey Fuller Test: 

while 𝑖 ∈  {0,1,2} do 

𝑢𝑡  = Δ𝑖(𝑧𝑡) Perform ADF test on 𝑢𝑡   

if 𝐻0 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 then 𝑤𝑡 =  𝑢𝑡;  𝑑1  =  𝑖 

else 𝑖 = 𝑖 + 1 

Kwiatkowski Phillips Schmidt Shin Test: 

while 𝑖 ∈  {0,1,2} do 

𝑣𝑡  = Δ𝑖(𝑧𝑡) Perform KPSS test on 𝑣𝑡   

if 𝐻0 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 then 𝑤𝑡 =  𝑣𝑡;  𝑑1  =  𝑖 

else 𝑖 = 𝑖 + 1 

if 𝑑1 = 𝑑2 then 𝑑 = 𝑑1 = 𝑑2  

else 𝑑 = 𝑑1; output warning message 

 

Input:  Time Series 𝑦𝑡, explanatory variable 𝑥𝑡, frequency 𝑓, cut off value 𝑉 

Output: Optimum 𝑝, 𝑞, 𝑃, 𝑄 

Initialize: 

Algorithm 1: Finding Optimum 𝑫 and 𝒅 of ARIMA Model 

Algorithm 2: Finding Optimum 𝒑, 𝒒, 𝑷, and 𝑸 of ARIMA Model 
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𝑎𝑡 = 0, 𝑏𝑡 = 0, 𝑝 = 0, 𝑞 = 0, 𝑃 = 0, 𝑄 = 0 

for 1 ≤  ℎ ≤  𝑓 + 5  

𝑎𝑡[ℎ]  = 𝜌(ℎ) 

for 1 ≤  ℎ ≤  𝑓 + 5 

𝑏𝑡[ℎ]  = 𝜋(ℎ) 

Optimum q: 

for 𝑖 ∈  {1, 2, 3, 4, 5} do 

if 𝑎𝑡[𝑖] < 𝑉 then 
𝑞 = 𝑖 − 1;  𝑗 = 𝑖 + 1  
 

for 𝑗 ∈  {1, 2, 3, 4, 5} do 

if 𝑎𝑡[𝑗] < 𝑉 then 
𝑞 = 𝑗 − 1 

    else 

𝑞 = 0 
Optimum p: 

for 𝑖 ∈  {1, 2, 3, 4, 5} do 

if 𝑏𝑡[𝑖] < 𝑉 then 
𝑝 = 𝑖 − 1;  𝑗 = 𝑖 + 1  
 

for 𝑗 ∈  {1, 2, 3, 4, 5} do 

if 𝑏𝑡[𝑗] < 𝑉 then 
𝑝 = 𝑗 − 1 

    else 

𝑝 = 0 
Optimum P: 

for 𝑖 ∈  {𝑓 + 1, 𝑓 + 2, … , 𝑓 + 5} do 

if 𝑏𝑡[𝑖] < 𝑉 then 
𝑃 = 𝑖 − 1;  𝑗 = 𝑖 + 1  
 

for 𝑗 ∈  {1, 2, 3, 4, 5} do 

if 𝑏𝑡[𝑗] < 𝑉 then 
𝑃 = 𝑗 − 1 

    else 

𝑃 = 0 
Optimum P: 

for 𝑖 ∈  {𝑓 + 1, 𝑓 + 2, … , 𝑓 + 5} do 

if 𝑎𝑡[𝑖] < 𝑉 then 
𝑄 = 𝑖 − 1;  𝑗 = 𝑖 + 1  
 

for 𝑗 ∈  {1, 2, 3, 4, 5} do 

if 𝑎𝑡[𝑗] < 𝑉 then 
𝑄 = 𝑗 − 1 

    else 

𝑄 = 0 
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Input:  Time Series 𝑦𝑡, explanatory variable 𝑥𝑡, frequency 𝑓, cut off value 𝑉 

Output: Optimum 𝑝, 𝑑, 𝑞, 𝑃, 𝐷, 𝑄, 𝑅, 𝐴𝐼𝐶 

Initialize: 

𝐴𝐼𝐶 = 0, 𝑅 = 0 

Fit ARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)[𝑓] on 𝑤𝑡 and explanatory variable 𝑥𝑡 

Compute AIC of the model, store as 𝐴𝐼𝐶 

Compute residuals 𝑒𝑡 = 𝑦𝑡  −  𝑦�̂� 

Ljung Box test on Model Residuals:  

if 𝐻0 𝑖𝑠 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 

   𝑅 = 1; Serial Autocorrelation Absent 

 else 

𝑅 = 0; Serial Autocorrelation Present 

 

IV. DISCUSSION 

Literature suggests that a best time series model should satisfy all the criterion discussed in section III.A. 

Existing automated solutions for finding suitable ARIMA model used in popular software packages only 

take care of one aspect – namely, minimizing the AIC of the model and only conducts KPSS test to find 

optimum 𝑑. They consider different combinations of 𝑝, 𝑞, 𝑃, and 𝑄 and choose the one which provides 

minimum AIC.  

The authors have sufficient evidence to believe that due to such neglect in consideration of ACF and 

PACF current methods fail to produce optimum model, especially in those cases where the data is noisy. 

It has also been observed that in some cases they give positive values of 𝑃 and 𝑄 even though it is clearly 

evident from the data (and from ACF and PACF) that there is no seasonality present. In addition to this, 

they do not conduct Ljung-Box test on model residuals on their own. In literature, it is highly 

recommended in order to notify the user if the serial correlation is present in the residuals or not.  

The algorithm discussed in previous section overcomes all these limitations and consequently shows 

better performance than existing solutions. First, it takes into account the results of both KPSS test and 

ADF test to find out optimum difference order and in case of contradictory results, it throws a warning to 

the user. Second, it iterates over ACF and PACF of the series to find out optimum 𝑝, 𝑞, 𝑃, and 𝑄 which 

makes this algorithm highly effective in case of noisy data to capture all the patterns and nuances present 

in the series. It tests the model on test data on its own to provide the user test MAPE. Third, this 

algorithm performs Ljung-Box test on model residuals to notify user if there is a serial correlation present 

Algorithm 3: Fitting optimal ARIMA model and performing diagnostic tests 
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in residuals generated by the model. Fourth, it gives the user liberty to choose the cut off value i.e. the 

lag(𝑉) till which ACF and PACF are considered significant on his own, unlike the existing black box 

solutions. Fifth, in cases where ACF and PACF behaves abnormally, for e.g., ACF at lag 1 and lag 2 is 

insignificant but ACF at lag 3 is significant, the existing solutions would provide MA order as 1 or 2 but 

this algorithm goes to lag 3 and beyond to find optimum MA order while making sure that model remains 

parsimonious. 

As a result, the model generated by this algorithm tend to perform better than the models generated by 

existing solution in terms of both AIC and test MAPE. 

V. EXPERIMENTS 

We show here three implementations of the proposed algorithm and demonstrate the superiority of our 

proposed solutions over currently popular solution such as auto.arima. Three cases have been chosen to 

highlight different aspect of our algorithm as will be discussed later. 

A. Dataset 1: Nile Data 

It is a standard time series data present in various statistical softwares summarizing annual flow of Nile 

River from year 1871 to 1970. It is illustrated in figure 1(a).  

 

Figure 1(a): Annual Flow of Nile River 

Figure 1(b): Quarterly Sales in Walmart 

The data is split into train and test data, in which, train data is from year 1871 to 1941 and test data from 

year 1940 to 1970. To align with notations used in the algorithm in section II, we have, frequency 𝑓 = 0, 

Train data as 𝑦𝑡 and cut off value 𝑉 = 0.33 as input. Canova-Hansen Test is not performed as time series 

is yearly in nature. Later, ADF test is performed followed by KPSS test, both of which, suggested 

optimum 𝑑 = 1. ACF and PACF were then computed on the differenced series, 𝑤𝑡, to find optimum 

values of 𝑝, 𝑞, 𝑃, and 𝑄. The correlograms are depicted in figure 2(a).  
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Figure 2(a): ACF, PACF in Dataset 1 

Figure 2(b): ACF, PACF in Dataset 2 

The algorithm derives ACF and PACF of the differenced series and gives optimum values of 𝑝, 𝑞, 𝑃, and 

𝑄 as (1,1,0,0) respectively. This finding is consistent with the figure 2(a). There are significant spikes in 

correlograms of both ACF and PACF at lag 1 which diminish from lag 2 onwards. This step is followed 

by fitting an ARIMA model and performing Ljung-Box test on the model residuals which suggested no 

serial autocorrelation in model residuals with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.71. The final output is 𝑝 = 1, 𝑑 = 1, 𝑞 =

1, 𝑃 = 0, 𝑄 = 0, 𝐷 = 0, 𝑅 = 1, 𝐴𝐼𝐶 = 894.13. The test MAPE is 10.56 %.  

To compare with existing automated solutions, auto.arima is implemented on the same train and test data. 

It suggests 𝑝 = 1, 𝑑 = 0, 𝑞 = 0, 𝑃 = 0, 𝐷 = 0, 𝑄 = 0, 𝐴𝐼𝐶 = 910. The optimum values of 𝑞 is not 

consistent with values of ACF of the series. It does not perform Ljung-Box test on its own. When 

performed manually on model residuals generated by this model, the test suggests no significant serial 

autocorrelation at p-value 0.87. The test MAPE is 12.68 %. By looking at figure 2(a) and at the results of 

both KPSS test and ADF test, it is evident that the performance of the search algorithms used in 

auto.arima is suboptimal. Due to mis-specification of the model, the AIC obtained is not minimum and it 

performs relatively poor on the test data. 

B. Dataset 2:  Real-life Retail Data  

We proceed by showcasing how the existing automated solutions tend to fail with real life seasonal data. 

Figure 1(b) presents Quarterly Sales data of a particular department of food section of Walmart U.S. The 

data has a non-linearity present which is evident from the slightly U-shaped form. 

We execute the proposed algorithm on this data by specifying 𝑦𝑡 as the Online Sales, 𝑓 = 4, 𝑉 = 0.33 

We have following two explanatory variables as input all the hypothesis testing were carried out at 5% 

significance level. 

1. 𝑥1𝑡: Real GDP of USA  
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2. 𝑥2𝑡: Unemployment rate of USA 

Canova-Hansen test is applied which suggested optimum 𝐷 = 0 with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.17. Afterwards, 

both KPSS test and ADF are test applied and both suggested optimum 𝑑 = 2. ACF and PACF were then 

computed on the differenced series, 𝑤𝑡.The correlograms are presented in figure 2(b). 

Optimum 𝑝, 𝑞, 𝑃, and 𝑄 are generated followed by fitting the ARIMA model and performing the Ljung-

Box test on the model residuals. The output is 𝑝 = 2, 𝑞 = 1, 𝑑 = 2, 𝑃 = 0, 𝐷 = 0, 𝑄 = 0, 𝑅 = 1, 𝐴𝐼𝐶 =

302.67. The optimum values of 𝑝, 𝑞, 𝑃, and 𝑄 match with the occurrence of spikes in the ACF and PACF 

of the series presented in fig. 2(b). The test MAPE is 18.67%.  

For comparison with the existing process, we implement auto.arima on same train and test data which 

gives 𝑝 = 0, 𝑞 = 0, 𝑑 = 0, 𝑃 = 0, 𝐷 = 0, 𝑄 = 0, 𝐴𝐼𝐶 = 381.43. We notice once again, auto.arima fails to 

produce model with correct parameter values. Model residuals have insignificant autocorrelation 

according to Ljung-Box test. The test MAPE is 35.39%.  

We note here that since auto.arima doesn’t perform extensive tests for 𝑝, 𝑞 and hence misses the mark 

while detecting the non-linearity mentioned previously. This is alleviated our algorithm and consequently, 

better results are obtained. 

C. Dataset 3: Simulated Data with Noise 

 
 

Figure 3(a): Plot of Dataset 3 

Figure 3(b): ACF, PACF in Dataset 3 

A time series is simulated to showcase how the proposed algorithm is performing better when the series is 

noisy. The simulated data is quarterly in nature.  

The data is presented in figure 3(a). An unusually high peak at time point 2 and small trough at time point 

10 indicate that the series is noisy and has significant outliers present. We executed the proposed 
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algorithm on this series with no exogenous variables at 𝑉 = 0.33 𝑎𝑛𝑑 𝑓 = 4. All the tests are done at 5% 

significance level. 

First, Canova-Hansen test is executed which gave optimum 𝐷 = 0 with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.33. Following 

this, KPSS test and ADF test are executed. Here, the ADF test suggested optimum 𝑑 = 1 and KPSS test 

suggested optimum 𝑑 = 0, it threw warning to the user that ‘ADF and KPSS results are different’ and 

went on to consider optimum 𝑑 = 1. ACF and PACF are then computed on the differenced series, 𝑤𝑡. 

The correlograms are shown in figure 3(b). 

Optimum 𝑝, 𝑞, 𝑃, and 𝑄 are found out based on the values of ACF and PACF of the differenced series and 

ARIMA model is then fitted. This is followed by performing Ljung-Box test on the residuals generated. 

The output is 𝑝 = 2, 𝑑 = 1, 𝑞 = 1, 𝑃 = 0, 𝐷 = 0, 𝑄 = 0, 𝑅 = 1, 𝐴𝐼𝐶 = 320.67. The optimum values of 

the parameters of the model match with the plots of ACF and PACF of the differenced series presented in 

fig. 3(b). The test MAPE is 29.52%. 

For comparison purpose, we also implemented auto.arima on same train and test data which produced the 

output 𝑝 = 0, 𝑞 = 0, 𝑑 = 0, 𝑂 = 0, 𝑄 = 0, 𝐷 = 0, 𝐴𝐼𝐶 = 340.03. The test MAPE is 91.52% which is 

magnanimous and indicates that auto.arima fails miserably to read the irregularities present in the data. 

To diagnose the reason behind this bump in performance, we must note that the proposed algorithm takes 

into account the behaviour of ACF and PACF of the series which makes it aware of the outliers present in 

the data. The resultant optimum value of 𝑝 = 2 dictates that the predicted value of series at any time point 

depends on the values of past two points and hence the effect of the outlier will be subdued. Adding yo 

this, the coefficient attached to two AR components are  0.57 and 0.45, both of them less than unity in 

absolute terms. This implies that, although the occurrence of outlier at time point 10 goes on to affect the 

predicted values from time point 11 onwards, the effect of the outlier declines significantly as we move 

far from time point 10. Effectively, this means that when we consider test data from time point 14 

onwards, the effect of outlier had already started getting dampened to the point that the predicted values 

do not get affected much. This results in high accuracy of the forecasts produced. 

On the other hand, auto.arima, in order to reduce AIC without considering ACF and PACF of the series 

produces a model with AR and MA components equal to zero and a non-zero mean. It fails to match the 

crests and troughs present in a data. The estimated value of mean is obviously affected by the presence of 

outlier and is equal to 71766.15. It ends up predicting same value of the time series in both train and test 

data at all time points which are equal to 71766.15. As a result, it fares poorly in terms of MAPE on test 

data as well in terms of AIC. 

The examples described above proves how the existing automated solutions get model specifications 

wrong at times due to not taking in to account the results of both ADF and KPSS test and the behaviour of 

ACF and PACF of the time series. The proposed algorithm outperforms these solutions in terms of both 

model AIC and test MAPE while taking same amount of computational time. It handles the noise as well 

as non-linearity in the data much better and produce best ARIMA models. 
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VI. CONCLUSION 

Authors would like to reiterate here that the proposed methods will only be successful where ARIMA is 

able to capture the variability in the data. ARIMA, despite being statistically coherent, suffers from 

certain limitations. Petrica et al [18] had discussed in detail how ARIMA fares poorly in financial data. 

This is due to its inability to capture heteroscedasticity. In case of small data, ARIMA fails to capture a 

seasonal pattern which makes it data hungry and its dependency on assumption of normality of data 

makes it impractical. 

That being said, time series is an indispensable part of research in several domains and seasonal ARIMA 

is one of the most common models used in all such works. However, as a result of the generality that 

SARIMA models offer parameter tuning becomes tiresome. As we discussed here, all previous efforts 

have been focused on optimising these parameters based on one or two criteria. Hence, in practice almost 

always the practitioner resorts to iterative optimisation through parameter space. We attempt to remedy 

that by introducing a series of tests in a need statement. As can be understood heuristically at each step we 

urge to fulfil one of the criteria of a good ARIMA fit as described in section III.A. The superiority of the 

process over the existing processes is also evident in the examples we have provided. Based on this and 

several other experiments the authors have conducted, we can conclude not only our model provides 

optimal parameter tuning resulting in better performance when executed on test data, but also the output 

parameters are more realistic and meaningful.  
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