
Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

129

Objected Oriented Design Defect Analysis and

Refactoring-Overview.

Nagaraj MS
1

Dr. R.Selvarani
2

1Honeywell Technology Solutions, Bangalore, India
2Director –Doctoral Program – ACED, Alliance University, India

Abstract- Software design defects often lead to bugs, runtime errors and software maintenance

difficulties. They should be systematically prevented, found, removed or fixed all along the software

lifecycle (Design, development and maintenance stages). However, detecting and fixing these defects is

still to the greater extent a difficult, time-consuming and manual process. Identifying and fixing the

defects at earlier part of software life cycle will reduce the significant maintenance cost. In this paper, we

propose detecting the design defects at design phase and software defects at implementation phase of the

software life cycle. Detecting defects in early stage of design cycle is useful from the perspective of cost

quality and schedule reduction.

Index Terms- Software design defects, software bugs, run time errors, object oriented defects, anti-

patterns, code smells

I. INTRODUCTION

Object-oriented programming (OOP) is industry adapted a programming paradigm which consists of

“objects" that have data fields (attributes that describe the object) and associated procedures known as

methods. Objects, are instances of classes, are used to interact with one another to design applications and

computer programs. Object oriented design, today, is becoming more popular in software development

environment and Object Oriented design metrics is an essential part of software environment. The main

objective of analyzing these metrics is to improve the quality of the software. Design defects, anti-

patterns, code smells defects at the architectural level and software coding errors must be detected and

corrected to improve software quality, automatic detection and correction of these software architectural

defects, which suffer of a lack of tools. The contribution of this paper is to present issues related to the

detection and correction of design defects at design level and software coding errors at implementation

phase.

II. DIFFERENCES BETWEEN DESIGN PATTERNS AND DESIGN FLAWS.

Design patterns is a reusable solution to commonly occurring design problems in software. Each class in

design pattern plays specific role and interactions between the classes are well defined. Anti-pattern

represents undesirable design structure that is difficult to maintain and understand the software. The

complexity of the classes that constitute design patterns are comparatively less than compared to classes

in anti-patterns. Roles and complexity and interaction with other classes can be used to identify the design

pattern because their important features can be easily defined and recognized, which is not possible in

case of some anti-patterns [1] as the classes that constitute the anti-pattern higher in complexity and

consists of multiple roles. Anti-patterns have very large variety of characteristics (e.g., number of

methods, naming of methods/classes, method parameters, class functionality etc.), therefore it is harder to

apply general detection rules to all of them.

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

130

III. DESIGN-DEFECTS OR ANTI-PATTERNS

Design defects are design structures that are complex, difficult to understand and maintain. They are bad

practices in software design. Design solution that is initially appears to be a good solution for the problem

to solve results in the creation of conflicts because of its implementation. Having knowledge of design

defects, the developer is equipping with the knowledge needed to avoid or fix errors before writing any

code or designing the software. A design defect or anti-pattern is a literary form that describes a

commonly occurring solution to a design problem, solution which generates negative consequences in

maintaining the software. Design defects are bad solutions to recurring design problems. The idea of

design defect is to show what not to do. The Blob, the Spaghetti, the Poltergeist, the Lava Flow are

among well-known design defects. For example, the Blob represents single complex controller class that

monopolizes the processing and is surrounded by simple data classes. The Spaghetti code, which is one of

the most famous design defect, describes a program or system with a software structure that lacks clarity

and hard to maintain.

IV. RELATION BETWEEN OBJECT ORIENTED MATRICES AND DESIGN DEFECT

Design defects can be identified by measuring the objected oriented metrics coupling, cohesion,

complexity and inheritance. Below table lists the relationship between the different object oriented metric

categories and most commonly occurring design defects [6].

V. BLOB DESIGN DEFECT

The Blob class also known as God class of the design. The Blob class violates the “Single-responsibility

principle” [14], Single-responsibility principle states there should one only one reason to change the class,

The Blob class is responsible for all (or most of the) behavior of an application while the rest of the

classes (the data classes) are only responsible for Encapsulating data, hence it monopolizes the processing

and acts as controller class that performs majority of system responsibilities. The basic form of a god

class is defined in Figure 1.

Anti-patterns
Metrics Category

Coupling Cohesion Complexity Inheritance

Blob High low High Low

Lava Flow Low

High

Functional

Decomposition
high Low Very Low

Poltergeists High

Low

Swiss Army

Knife
High

High

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

131

Figure 1 Blob or God Class Architecture

Blob class will consist of one or more Blob method that obtains their data from classes different from the

class they belong to [2] and perform the complex computations or operations. The blob method can also

be visualized as complex method that performs more than one functionality i.e. there will be more than

one reason to change the method. The basic form of a god method is defined in Figure 2 by the diagram

modelled with continuous lines. This shows that the god method accesses attributes from the other classes

through its method which expose the attributes of the class.

Note: Arrow marks in all the diagrams indicate the function call. Where the pointing to

Called from caller function.

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

132

Figure 2 Blob Method Architecture

Detecting Blob pattern

As Blob method performs the complex computations, the complexity of the function is high and, they

access the data from other classes resulting high coupling and low Cohesion. The Blob defect can be

identified by measuring the object-oriented metrics complexity, coupling and Cohesion. Object oriented

metrics are captured through software metrics and properties are expressed in terms of valid values for

these metrics [11]. The most widely used metrics are the ones defined by Chidamber and Kemerer [3].

These include: Weighted methods per class, WMC, Coupling between objects, CBO.

Refactoring a Blob Class

Solution: Refactoring of Blog class exposes the operation rather than the attributes as shown in Figure 3.

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

133

Figure 3 decomposing the responsibilities

Refactoring a Blob Method.

The Blog method consists of multiple responsibilities; this method can be decomposing until complexity

reduces and becomes a function with single responsibility with different classes as shown in the Figure 3.

VI. POLTERGEISTS DESIGN DEFECT

Poltergeist is a class with minimal or limited responsibilities and roles to play in the software system;

therefore, their effective life cycle is quite brief; they clutter software designs, creating unnecessary

abstractions [6];

Poltergeists can occur in four different forms as follows

 Irrelevant classes:

 Agent classes

 Operation classes

 Object classes

Irrelevant classes:

An irrelevant class does not have any meaningful behavior in the software design. They composed of only

of get (class data member accessor), set (sets the class data member) methods. Figure 5 shows the UML

notation of design defect Irrelevant classes. The concreate class will access the irrelevant class attribute

through the get method and sets attributes using set method.

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

134

Figure 4 Irrelevant Classes

Refactoring Irrelevant Class.

Although the behavior of irrelevant classes is meaningless, the data that it may contain is not. The

correction of irrelevant classes consists in both eliminating them from the design and placing the data they

contain with the respective accessor class.

Figure 5 Refactoring irrelevant class

Agent classes:

Agent design defect are classes that are responsible for only passing the messages from one class to

another, i.e., methods that offer redundant paths to access operations of other classes in the design.

The UML specification of this design defect is shown in Figure 6.

Figure 6 Agent classes

Refactoring Agent Class

Refactoring agent class involves removing the agent method from the design and replacing the

communication it performs to be done directly between the other two classes involved in the anti-pattern

[4].

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

135

Figure 7 Refactoring Agent class

Operation classes:

Operation design defect are classes with only one meaningful behavior and for having a short life cycle.

The main idea of an operation class is that an operation that should have been a method within a class has

been turned into a class itself. UML notation of Operation classes is shown in Figure 8.

Figure 8 Operation classes

Refactoring operation class.

Refactoring of operation class design defect involves moving the attributes and functionality to suitable

class.

Figure 9 Refactoring operation class

Object classes:

Object classes are subclasses representing exactly the parent classes with no additional functionalities or

attributes. In figure 11 classes SbClass1 and SubClass2 are Object classes as they are exactly same as

their parent class ConcreateClass2.

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

136

Figure 10 Object classes

Refactoring Object class.

Object class does not override any behavior or functionality of their parent class and they do not have

additional behavior, they are unnecessary and therefore, must be remove them from the class hierarchy

altogether.

Figure 11 Refactoring Object class

VII. LAVA FLOW DESIGN DEFECT OR FUNCTIONAL DECOMPOSITION

Lava flow design defect is a class with single action such as function which makes it simple [4].

Lava flow design defect is created by designer when he creates each class for function Figure 13,

resulting multiple classes in the design where the functionality not logically grouped.

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

137

Figure 12 Lava Flow

Refactoring Function Decomposition design defect

 If the class has a single method are helper classes with single functionality, remove this class by moving

the method to part of an existing class base class. The goal is to consolidate the functionality of several

types into a single class that captures a broader domain concept than the previous finer-grained classes.

For example, rather than have classes to manage device access, to filter information to and from the

devices, and to control the device, combine them into a single device controller object with methods that

perform the activities previously spread out among several classes. If the class does not contain state

information of any kind, consider rewriting it as a function. Potentially, some parts of the system may be

best modeled as functions that can be accessed throughout various parts of the system without restriction.

Figure 13 Refactoring Function Decomposition Design Defect

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

138

VIII. SWISS ARMY KNIFE DESIGN DEFECT

Swiss army knife class implements many interfaces to expose the maximum possible functionalities. As

it implements may interface it becomes complex class exposing many functionalities. The difference

between Swiss army knife and the Blob is that the Swiss army knife exposes a high complexity to address

all foreseeable needs of the class, whereas the Blob is a single large multifunctional object that

monopolizes all the treatment and the system data. The symptoms of the presence of Swiss Army Knife

anti-pattern is : Complex interfaces with no clear abstraction or purpose for the class, which is represented

by the lack of focus in the interface.

Figure 14 Swiss Army Knife

Refactoring Swiss Army Knife
Refactoring the swiss army knife involves reducing the complexity of the interfaces.

Apply Extension Interface Patterns:

• Introduce a common protocol for all provided interfaces (incl. Interface navigation)

• Integrate additional functionality so that clients can discover existing component interfaces and

navigate between them.

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

139

Figure 15 Refactoring of Swiss Army Knife anti-patter

IX. PROGRAMMING ERRORS OR DEFECTS.

Defects for programming coding errors, assignment versus equality operators, type mismatch, wrap

around, string arrays. They occur due to the bad programming below table lists defects and their symptom

and correction. Defects are under Numerical Defects, Programming Defects and Programming Defects.

Numerical Defects [8]

Defect Type - Defect Description Defective Code Sample Corrective Code Sample

Float overflow - Overflow from
operation between floating points

float square(void) {

 float val = FLT_MAX;

 return val * val;
}

double square(void) {

 float val = FLT_MAX;

 return val * val;
}

Invalid use of standard library
floating point routine - Wrong

arguments to standard library

function

double arccosine(void) {
 double degree = 5.0;

 return acos(degree);

}

double arccosine(void) {

 double degree = 5.0;
 double radian = degree*180/(3.14159);

 return acos(radian);

}

Float division by zero - Dividing

floating point number by zero

float fraction(float num){

 float denom = 0.0;
 float result = 0.0;

 result = num/denom;

 return result;}

float fraction(float num){

 float denom = 0.0;

 float result = 0.0;
 if(((int)denom) != 0)

 result = num/denom;

 return result;}

Integer conversion overflow -

Overflow when converting between
integer types

char convert(void) {

 int num = 1000000;

 return (char)num;
}

long convert(void) {

 int num = 1000000;

 return (long)num;
}

Integer overflow - Overflow from
operation between integers

int plusplus(void) {

 int var = INT_MAX;
 var++;

 return var;
}

long plusplus(void) {

 long lvar = INT_MAX;
 lvar++;

 return lvar;
}

Invalid use of standard library integer
routine - Wrong arguments to

standard library function

int absoluteValue(void) {
 int neg = INT_MIN;

 return abs(neg);

int absoluteValue(void) {
 int neg = INT_MIN+1;

 return abs(neg);

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

140

} }

Integer division by zero - Dividing
integer number by zero

int fraction(int num){

 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

int fraction(int num){
 int denom = 0;

 int result = 0;
 if (denom != 0)

 result = num/denom;

 return result;
}

Shift of a negative value - Shift

operator on negative value

int shifting(int val){
 int res = -1;

 return res << val;

}

int shifting(int val){
 unsigned int res = -1;

 return res << val

}

Shift operation overflow- Overflow
from shifting operation

int left_shift(void) {

 int foo = 33;

 return 1 << foo;
}

long left_shift(void) {

 int foo = 33;

 return 1 << foo;
}

Sign change integer conversion

overflow - Overflow when converting

between signed and unsigned integers

char sign_change(void) {
 unsigned char count = 255;

 return (char)count;

}

int sign_change(void) {
 unsigned char count = 255;

 return (int)count;

}

Unsigned integer conversion

overflow - Overflow when converting

between unsigned integer types

unsigned char convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned char)unum;

}

unsigned long convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned long)unum;

}

Unsigned integer overflow -

Overflow from operation between

unsigned integers

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;

 return uvar;

}

unsigned long plusplus(void) {

 unsigned uvar = UINT_MAX;
 unsigned long ulvar = uvar++;

 return ulvar;

}

Programming Defects [8]

Invalid use of == (equality) operator -
Equality operation in assignment

statement

 for (j == 5; j < 9; j++) {

 array[i] = j;
 i++;

 }

 for (j = 5; j < 9; j++) {

 array[i] = j;
 i++;

 }

Invalid use of = (assignment) operator

- Assignment in control statement

 if(alpha = beta){

 printf("Equal\n");
 }

 if(alpha == beta){

 printf("Equal\n");
 }

Invalid use of floating point operation
- Imprecise comparison of floating

point variables

 float flt = 1.0;

 if (flt == 1.1)

 return flt;
 return 0;

 float flt = 1.0;

 if (fabs(flt-1.1) < Epilson)

 return flt;
 return 0;

Dead code - Code cannot be reached

along any execution path

 int table[5];/* Create a table */

 for(int i=0;i<=4;i++)

 table[i]=i^2+i+1;
 if(table[ch]>100) return 0;

 /*Defect: Condition always false */

 return table[ch];}

 int table[5];
 /* Create a table */

 for(int i=0;i<=4;i++)

 table[i]=i^2+i+1;
 /* Fix: Remove dead code */

 return table[ch];

}

Non-initialized variable - Variable

not initialized before use

 int command;

 int val;
 command = getsensor();

 if (command == 2)

 {
 val = getsensor();

 }

 int command;

 /* Fix: Initialize val */
 int val=0;

 command = getsensor();

 if (command == 2)
 {

 val = getsensor();

 }

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

141

 return val;

 return val;

Uncalled function - Function with

static scope never called in file

static int Initialize(void) {…

 }
void main()

 {

 int num;
 num=0;

 printf("The value of num is %d",num);

 }

void main()
 {

 int num;

 /* Fix: Call static function Initialize */
 num=Initialize();

 printf("The value of num is %d",num);

 }

Variable shadowing - Variable hides
another variable of same name with

nested scope

int fact[5]={1,2,6,24,120};

int factorial(int n){
 int fact=1;

 /*Defect: Local variable hides global array with

same name */
 return(fact);

 }

int fact[5]={1,2,6,24,120};

int factorial(int n){

 /* Fix: Change name of local variable */
 int f=1;

 for(int i=1;i<=n;i++)

 f*=i;
 return(f);

 }

Defects in Multi-Threaded [8]

Data race - A data race is a situation
where events from different threads

execute without ordering and read

and write the same data. Data races
can lead to data inconsistency and

unintended nondeterminism.

violation of atomicity - A violation of

atomicity occurs if a sequence of

shared data access of one thread is
interleaved with access to the same

data from other threads.

class Stack {

int top;

Object[] arr;

int size() {

return top;
}

void push(Object o) {

// assert (top < arr.length);
arr[top++] = o;

}
Object pop() {

// assert(top > 0);

return arr[--top];
}

}

class Stack {

int top;

Object[] arr;

int size() {

return top;
}

synchronized void push(Object o) {

// assert (top < arr.length);
arr[top++] = o;

}
synchronized Object pop() {

// assert(top > 0);

return arr[--top];
}

}

Deadlock - A deadlock situation

occurs at runtime if threads use
synchronization so that a cyclicwait

condition arises.

deadlock situation occurs at runtime if threads use
synchronization

so that a mutual wait condition arises Detected should be detected and corrected

ACKNOWLEDGMENT

In preparation of this paper, I had to take help and guidance of respected persons, who deserve my

deepest gratitude. I would like show my gratitude to Mr. Rabindranath Raul from Honeywell who

provided the technical support also helped in IP review. In addition, I thank Dr. R. Selvarani, who guided

me throughout paper preparation.

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

142

X. CONCLUSION

Currently system engineers use different design tools like UML, SYSML, MATLAB, SCADE etc to

convert system requirements to architectural design diagrams. Design verification to detect the Design

Defects and rectify them at design level and software errors at implementation phase is very impartment

to control the flow of defects to the subsequent process steps of SLDC, making design and software more

robust. Fixing design defects will make design more maintainable and reduces significant maintenance

cost and software errors will reduce the unexpected behavior of the software and those reduce the defects

identified at the testing phase, those reducing the cycle time, which intern reduces the manual hours.

REFERENCES

[1]. IVAN POLÁŠEK : Anti-pattern Detection as a Knowledge Utilization

[2] W. Brown, R. Malveau, H. McCormick, and T. Mowbray, AntiPatterns:Refactoring software,

architectures, and projects in crisis. John Wiley & Sons, 1998.

[3] Naouel Moha1, Amine Mohamed Rouane Hacene2, Petko Valtchev3, and Yann-Ga¨el Gu´eh´eneuc1

Refactorings of Design Defects using Relational Concept Analysis

[4] Roger Lee Studies in Computational Intelligence,Volume 364

[5] R. Selvarani. S. Aishwarya. “A Formal Model indicating Inter-relationship of CK Metrics in view of

Defect Proneness". Accepted for publication in the International Journal of computers and Technologies

(IJCT). August 2013

[6] Maria Teresa Llano† and Rob Pooley UML Specification and Correction of Object-Oriented Anti-

patterns.

[7]. Brown, W.J., Malveau, R.C., McCormick, H.W., Mowbray, T.J.: Antipatterns: Refactorin Software,

Architectures, and Projects in Crisis, 1st edn. John Wily and Sons,West Sussex (1998)

[8]. Matlab defects web page http://www.mathworks.in/help/bugfinder/ref/floatconversionoverflow.html

[9] Christoph von Praun, Dipl.-Inf. TU-M¨unchen

Detecting Synchronization Defects inMulti-Threaded Object-Oriented Programs

[10] R. Selvarani.Areej, R.Bharathi “Software Reliability Estimation at Design Stage based on

multifunctional estimation Technique” submitted to ACM TOSEM, August 2013

[11] R. Selvarani. S. Aishwarya , “A frame work for codifying the association of CBO and NOC in the

observation of Defect proneness” submitted to Empirical software engineering journal, August 2013

[12] Smith, C.U. and L.G. Williams, Software performance antipatterns, in Proceedings of the

2nd international workshop on Software and performance. 2000, ACM: Ottawa, Ontario,

Canada. p. 127-136.

[13] Lanza, M. and R. Marinescu, Object-Oriented Metrics in Practice. 2005: Springer-Verlag

New York, Inc.

http://www.mathworks.in/help/bugfinder/ref/floatconversionoverflow.html

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

143

[14] Gaffney, J. E.: Metrics in software quality assurance, in Proc. of the ACM '81 Conference, ACM,

126-130, 1981.

[15]. A. J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[16] Roger S. Pressman. Software Engineering { A Prac- titioner's Approach. McGraw-Hill Higher

Education, 5th edition, November 2001. isbn: 0-07-249668-1.

[17] Robert C. Martin, first five object-oriented design(OOD) principles, https://scotch.io/bar-talk/s-o-l-i-

d-the-first-five-principles-of-object-oriented-design

[18] R. Selvarani. T.R.G. Nair. “Defect Proneness Estimation and Feedback Approach for Software

Design Quality Improvement" ELSEVIER, Information and Software Technology, volume 54 issue 3,

274 – 285 (2012)

[19] OMG, OMG Unified Modeling Language (OMG UML), Infrastructure. V.2.2. Object Management

Group, 2009.

[20] N. Moha and Y. Gu´eh´eneuc, “On the automatic detection and correction of software architectural

defects in object oriented designs,” ECOOP Workshop on Object-Oriented OUTReengineering, 2005.

https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design

