
Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

325

A survey on Machine Learning in Compiler

Sriyasree Swain*, Bhavani Supriya*, Nivedita Manohar**, Vijaya Lakshmi R**

*Dept.of Information Technology

ACED, Alliance University, Bengaluru

**Assistant Professor, Dept.of CS/IT,

ACED, Alliance University,Bengaluru

Abstract: Optimization of a tuning hardwired compiler is the rapidly budding hardware which makes

porting a compiler which will be optimizing in its feature and challenging. The approach for the such

challenging compiler is with development of modular, self-optimizing and extensible compilers that adopt

the best optimization heuristics based on the behavior of the platform. The contribution of the machine

learning towards the development of compiler which is capable to adjust automatically with improved

execution time, code size on different architectures is Machine Learning for Embedded PrOgramS

optimization (MILE POST). Recursive queries technique can be utilized for effective execution plans and

the resulting runtime plans can be executed on a single unified data parallel query processing engine.

High performance software development is also difficult task that requires the use of low-level,

architecture specific programming models such as MPI for clusters, CUDA for GPUs, and OpenMP for

CMPs. Probabilistic search of the optimization space can support to a significance speedup over the

baseline compilers with the higher optimization settings, on several different processor architecture.

Classifier systems are massively parallel, message-passing, rule-based systems that learn through credit

assignment (the bucket brigade algorithm) and rule discovery (the genetic algorithm). They typically

operate in environments that exhibit some characteristics such as -perpetually novel events accompanied

by large amounts of noisy or irrelevant data, continual, often real-time, requirements for action, implicitly

or inexactly defined goals, sparse payoff or reinforcement obtainable only through long action sequences.

Classifier systems are designed to absorb new information continuously from such environments,

devising sets of competing hypotheses (expressed as rules) without disturbing significantly capabilities

already acquired.

The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among

different approaches and finally, the influential research in the field. The challenges are listed at end.

Index Terms- Optimization, Classifier systems, Machine Learning

I INTRODUCTION

In simple design of game software, any good player can complicate the system by throwing some twists.

But in real world such twist will be more, and design of system should support to face such twists. For a

machine learning system, the problem is one of constructing relevant categories from the system’s

primitives (pixels, features, or whatever else is taken as given). Discovery of relevant categories is only

half the job; the system must also discover what kinds of action are appropriate to each category. The

overall process bears a close relation to the Newell-Simon [3] problem solving paradigm, though there are

differences arising from problems created by perpetual novelty, imperfect information, implicit definition

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

of the goals, and the typically long, coordinated action sequences required to attain goals. Environments

wherein timely outside intervention is difficult or impossible. The only option then is learning or, using

the more inclusive word, adaptation. In broadest terms, the object of a learning system, natural or

artificial, is the expansion of its knowledge in the face of uncertainty. More directly, a learning system

improves its performance by generalizing upon experience. Clearly, in the face of perpetual novelty,

experience can guide future action only if there are relevant regularities in the system’s environment.

Human experience indicates that the real world abounds in regularities, but this does not mean that it is

easy to extract and exploit them. The overall process bears a close relation to the Newell-Simon [40]

problem solving paradigm, though there are differences arising from problems created by perpetual

novelty, imperfect information, implicit definition of the goals, and the typically long, coordinated action

sequences required to attain goals[1][2][3].

New compiler techniques must arise to support complex image processing applications without

sacrificing programmability. This paper focuses on two image processing interfaces considered as DSLs,

Simple Morphological Image Library(SMIL) and Framework for Embedded Image Applications

(FREIA), supporting each a different set of hardware targets and providing different levels of

programmability. We built a compiler to automatically generate lower-level but more portable FREIA

DSL code from high-level SMIL DSL applications. We evaluate this compiler on a set of seven image

processing applications. Some of the advanced compilers to support image processing are Simply

Morphological Image Library(SMIL), Framework for Embedded Image Applications (FREIA), Cython

which is a Python to C – Compiler[4].

To locate the bugs of program it is necessary to design new types of compilers which will support to

debug the errors in server level as well as in kernel levels[5]. These all compilers are the challenges of the

competitive industry these are discussed. The reference reveals that in the domain of Big data domain

specific languages are necessary to extend with machine learning concept in bigdata. In such situation

specific languages should support for all aspect with optimized way[6].

ScalOps is a DSL with the goal of enabling Machine Learning algorithms to run on a cloud computing

environment and overcoming a limitation of the traditional MapReduce programming model: the lack of

iteration. ScalOps is a textual programming DSL developed in jointly by the University of California,

Irvine and Santa Cruz, and the division Yahoo! Research. The DSL also has Scala language serving as a

host language, which means that ScalOps is an internal DSL. Its high-level syntax makes it a declarative

language, and as the type checking happens in compilation time, ScalOps is considered a statically typed.

ScalOps needs to be compiled to generate lower level code, which makes it be classified as a translated

language, according to the analysis of this survey. Additionally, the language supports vector, matrix, and

graph operations in both parallel and cloud computing environment. To support iterations in MapReduce,

ScalOps designers introduced an enhanced version of the programming model called Map-Reduce-

Update. This new version consists of three user-defined functions called map, reduce, and update. The

map function receives read-only global state values and is applied to training data points in parallel. The

reduce function aggregates the output of the map function. Finally, the update function receives the

aggregated value and produces a new global state value for the next iteration. Alternatively, when

appropriate, the update function indicates that no additional iteration is necessary [9][10][11].

Compilation can be speed up the compile processes by at least a factor of two with almost the same

generated code quality on the SPEC2000 benchmark suite, and that our logistic classifier achieves the

same prediction quality for non-SPEC benchmarks.

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

II. METHODOLOGY

The compilation algorithm can be written as shown in the Table 1. The algorithm accept the Majority

Inverter Graphs (MIG) M as an input to give a Programmable Logic-in-Memory (PliM) program as an

output. PliM enables logic operations on a regular Resistive Random-Access Memories (RRAM) array. It

uses a single instruction RM3, which computes the three major operations in which one input is inverted

[10]

Table 1: Compilation Algorithm
Input MIG M

1. Foreach leaf in M

2. Do set COMP[v]← T

3. End

4. Foreach MIG node in M

5. Do if all children of v are computed then

6. Q.enqueue(v)

7. End

8. End

9. While Q is not empty

10. Do set c ← Q.pop();

11. Set P ← P U translate(c);

12. Set COMP[c] ←T

13. Foreach parent of c do

14. If all children of v are computed then

15. Q.enqueue(v);

16. End

17. End

18. End

SMIL Python Code:

import smilPython as smil

imin = smil.Image("input.png")

imout = smil.Image(imin)

smil.dilate(imin, imout)

imout.save("output.png")

FREIA C Output Code:

#include "freia.h"

#include "smil-freia.h"

int main(int argc, char *argv[]) {

/* initializations... */

freia_data2d *imin;

imin = freia_common_create_data(/* */);

freia_data2d *imout;

imout = freia_common_create_data(/* */);

#define e0 SMILTOFREIA_SQUSE

#define e0_s 1

freia_cipo_dilate_generic_8c(imout, imin, e0, e0_s);

freia_common_tx_image(imout, &fdout);

freia_common_destruct_data(imout);

freia_common_destruct_data(imin);

/* shutdown... */

}
Figure 1 SMIL Input Code and FREIA C Code

Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM), April 2019

For SMIL applications, the compiler such as smiltofreia generates directly FREIA C code from SMIL

Python programs. The sample of such code is as shown figure 1.[13]

III CONCLUSION

The study throws many challenges such as requirement of optimized compiler for processing image

processing languages, conversion from one languages to other many languages. The translation of

languages is essential in case of multi programming development. This makes user to adopt any one

language. Hardware specific optimization compilation is also required which is one of the challenging.

REFERENCES

[1] Grigori Fursin,et al, “MILEPOST GCC; machine learning based research compiler”.

[2] L.B.Booker,D.E. Goldberg and J.H Holland,” Classifier Systems and Genetic Algorithms”,

Artificial Intelligence, Elsevier Science Publisher, 1989.

[3] Newell A and Simon H A, Human Problem Solving (Prentice-Hall, Englewood Cliffs,NJ,1972).

[4] Pierre Guillou, Bnoit Pin, Fabien Coelho, Francois Irigoin, “ A Dynamic to Static DSL Compiler

for Image Processing Application”, Processing Applications. Compilers for Parallel Computing

2016. . July 8, 2016, Valladolid, Spain.

[5] Chengnian Sun, VuLe, Qirun Zhang, Zhendong Su, “ Toward Compiler Bugs in GCC and

LLVM”, ACM, ISSTA ’16, July 18-22

[6] Ivens Portugal David R. Paulo Alencar David R. Donald Cowan David R. ,” A Survey on

Domain-Specific Languages for Machine Learning in Big Data”,

[7] Gennady Pekhimenko , Angela Demke Brown, “Efficient Program Compilation through

Machine Learning Techniques”, http://sysweb.cs.toronto.edu

[8] Borkar, V., Bu, Y., Carey, M. J., Rosen, J., Polyzotis, N., Condie, T., Weimer, M., &

Ramakrishnan, R. (2012). Declarative Systems for Large-Scale Machine Learning. IEEE

Bulletin of the Technical Committee on Data Engineering, 35(2), 24-32.

[9] Mathias Soeken et al, “An MIG based Compiler for programmable Logic-in-Memory

Archtectures

[10] Weimer, M., Condie, T., & Ramakrishnan, R. (2011). Machine learning in ScalOps, a higher

order cloud computing language. In NIPS 2011 Workshop on Parallel and Large-scale Machine

Learning (BigLearn) (Vol. 9, pp. 389-396).

[11] Odersky, M., Spoon, L., & Venners, B. (2005). Programming in Scala. École Polytechnique

Fédérale de Lausanne.

[12] Pierrc Guilou et al “ A Dynamic to Static DSL Compiler for Image Processing Application”,

http://sysweb.cs.toronto.edu/

